Thermodynamics

Usually I have you start with electricity (dryer room)

We're going to start with Thermodynamics instead.

⇒ Good inductive/deductive skills development.

Thermodynamics – study of Temperature, Internal Energy, Energy
Transfer, State Change ⇒ Laws of Thermodynamics

As usual, the fun stuff to study is how quantities change.

- In mechanics \rightarrow could <u>see</u> the changes (position, velocity, etc.)
- In thermo. \rightarrow can't see <u>most</u> changes (1 exception Vol. of gas)
 - \Rightarrow need to <u>measure</u> quantities <u>indirectly</u>.
 - Thermometers
 - Pressure sensors
 - \Rightarrow or <u>calculate</u> quantities <u>indirectly</u>.
 - Internal Energy
 - Energy Transfer (Work, Heat)

Unit 16.1

Today – Look at:

- Temperature
- Temperature scales
- How to measure temperature
- Factors that affect accurate temperature measurements
 - \Rightarrow Qualitative look at factors involved in temperature <u>changes</u>.

Unit 16.2

Just need a simple definition of how a glass bulb thermometer works.

Unit 16.3

There are 4 temperature scales in common use.

- Celsius, Fahrenheit \Rightarrow Relative Scales
- Kelvin, Rankine \Rightarrow Absolute Scales

Units for temperature are degrees + scale used.

- 1 exception: Kelvin \rightarrow no degrees, just the scale.

Defining a temperature scale is somewhat arbitrary, but the fixed points must be repeatable.

You will define and create your own temperature scale.

Conversions between scales:

- °F & °C are relative scales slope <u>and constant term</u>.
- Be careful to include units of slope and constant term.

Most of the world is metric and uses the Celsius temperature scale.

Unit 16.4, 16.5

We want the most accurate temperature measurements we can get.

- Good calibration of an electronic temperature sensor.
- Look at factors that affect temperature measurements.