Activity 19.8.1 a

Coulomb's Law (for a "point" object)
(Force on "point" object B by "point" object A, separated by distance $r_{B A}$)

$$
\vec{F}_{B A}^{e l e c}=\frac{k q_{A} q_{B}}{r_{B A}^{2}} \hat{r}_{B A}
$$

Electric Field (for a "point" object)
(Electric field created by "point" object A, at a distance r from object A)

$$
\vec{E}=\frac{k q_{A}}{r^{2}} \hat{r}
$$

(Both $\hat{r}_{B A}$ and \hat{r} are unit vectors that point directly away from "point" object A - refer back to activity 19.4.2)

Activity 19.8 .1 b \& c

The spreadsheet is on the class resources page, and is already completed.

- Click on cell B4 to see how the Excel formula matches the equation for the electric field.
- Use the spreadsheet to find the length of the E-field vector at each point for each charge. For example, for the E-field vector at point \#1 by charge B, replace " 6.0 " under " $r(\mathrm{~cm})$ "with " 6.3 " - the E-field vector should then be drawn as being 0.45 cm long.
- Use your ruler to draw your E-field vectors and follow the instructions for the rest of the activity.

