Unit 20 – Session 2

Last time, we looked at two separate concepts:

• Field lines

 $\circ\,\,$ # of lines is directly proportional to the magnitude of the charge.

• Flux,
$$\Phi \equiv \vec{E} \cdot \vec{A} = \left| \vec{E} \right| \left| \vec{A} \right| \cos \theta$$

• Flux is directly proportional to the # of lines at the surface of an area, pointing outward (positive flux) or pointing inward (negative flux).

When we introduced the concept of work, $W \equiv \vec{F} \cdot \Delta \vec{s} = |\vec{F}| |\Delta \vec{s}| \cos \phi$, last semester, it wasn't that useful to us until we related it to another concept: change in kinetic energy, $\Delta K \equiv \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$.

•
$$W = \Delta K$$
 or $|\vec{F}| |\Delta \vec{s}| \cos \phi = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$

Activity 20.5

Here, we are going to combine the concepts of field lines and flux together to get a useful relationship, like we did for work and kinetic energy.

Our previous exploration of flux was for an open surface (a sheet of paper) – however, the concept of flux won't be useful to us unless we look at a 3-dimensional closed surface, with a volume inside our surface (like a sphere, or a box, or a cylinder).

Some terms and "rules":

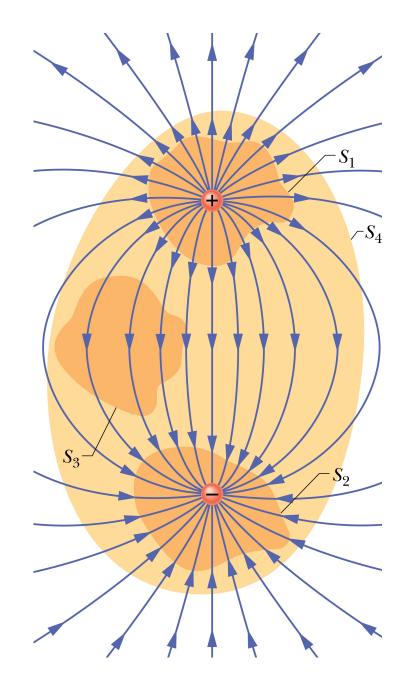
- 1) You can pick any surface area shape you want, but it must be a <u>closed</u> surface area (encloses a volume).
- 2) The surface area is called a Gaussian surface
- 3) The unit area vectors of the surface always point <u>outward</u>.
- 4) \vec{E} field lines pointing from inside to outside $\Rightarrow +\Phi^{elec}$ \vec{E} field lines pointing from outside to inside $\Rightarrow -\Phi^{elec}$

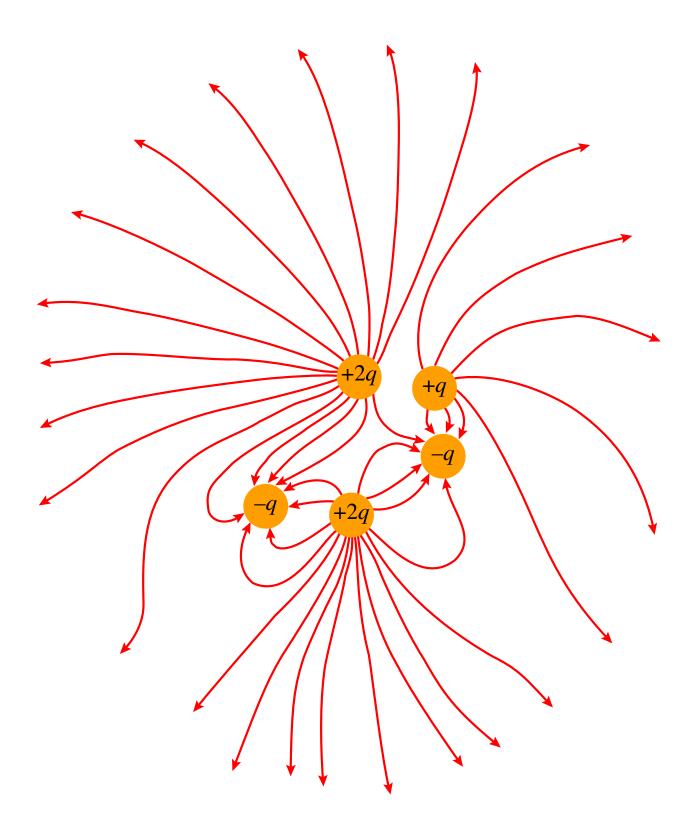
Since 3-dimensional surfaces are hard to draw on paper, we will explore the relationship between electric field lines and flux using an abstract world called Flatland:

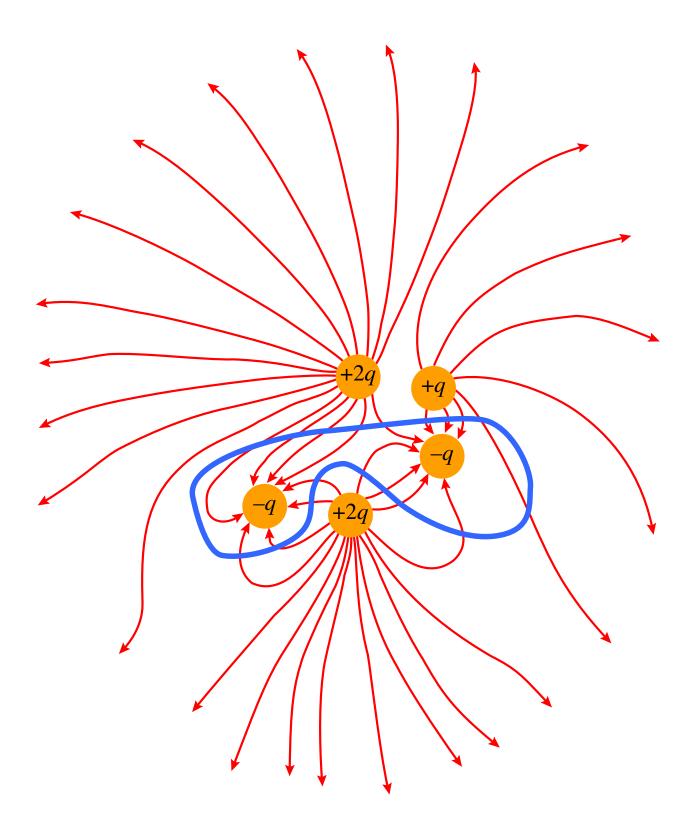
Instead of a closed surface area surrounding a volume

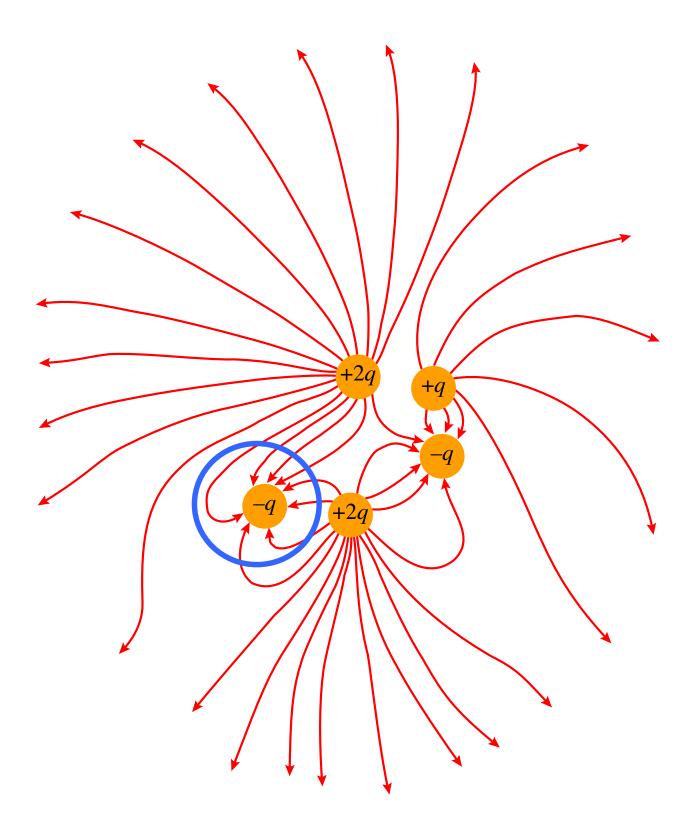
 \Rightarrow a closed boundary line surrounding an area.

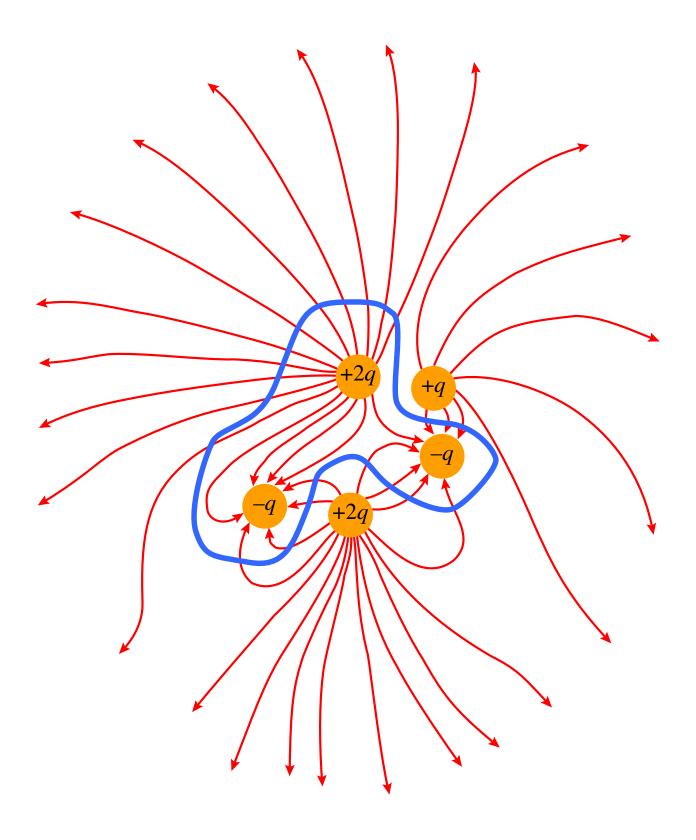
An example (before we do Activity 20.5.1).

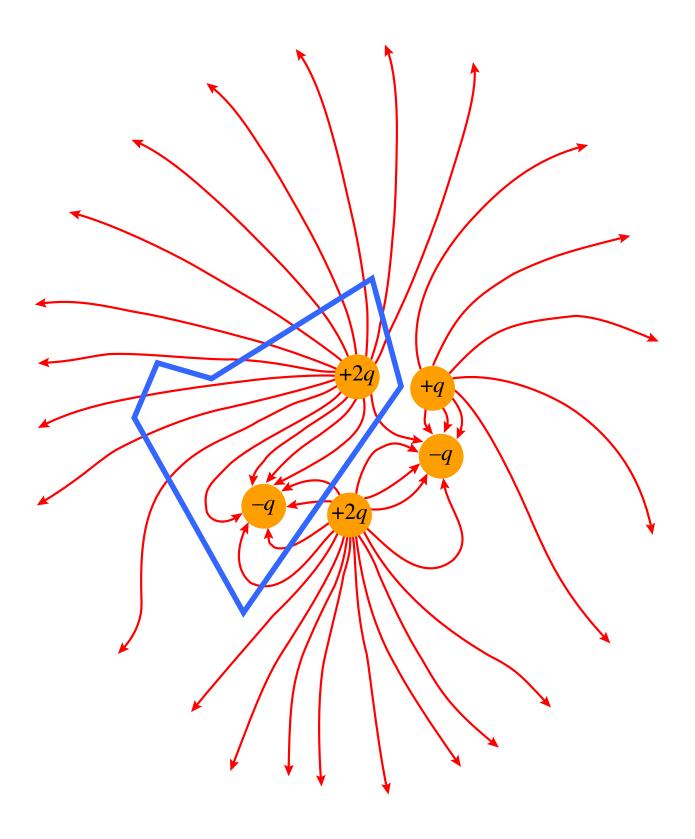


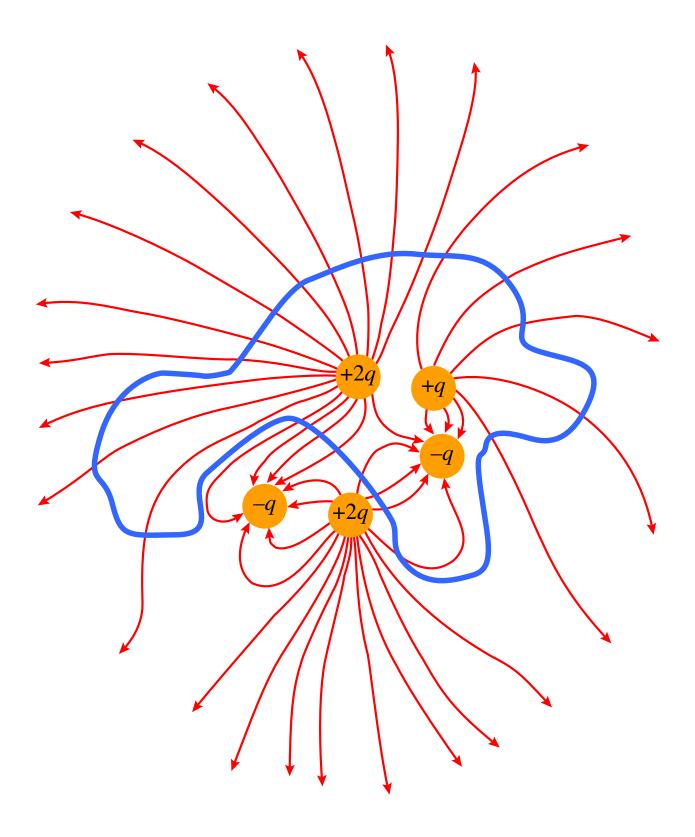












Activity 20.5.2.

Hopefully, you concluded a few things from your observations:

• The flux at the boundary of a <u>closed</u> surface is directly proportional to the total amount of charge enclosed by that surface:

$$\circ \Rightarrow \Phi^{elec} = (constant)q^{enclosed}$$

• We aren't doing the 3rd session for this Unit (20.8 & 20.9) – we would find there that the *constant* is equal to $4\pi k$, where k is Coulomb's constant. It is sometimes written instead as *constant* = $4\pi k = \frac{1}{\varepsilon_0}$ (ε_0 is pronounced

"epsilon zero" or "epsilon naught").

• This relationship between the net flux at the boundary of a closed surface and the enclosed charge is called Gauss' Law.

$$|\vec{E}||\vec{A}|\cos\theta = 4\pi kq^{enclosed}$$

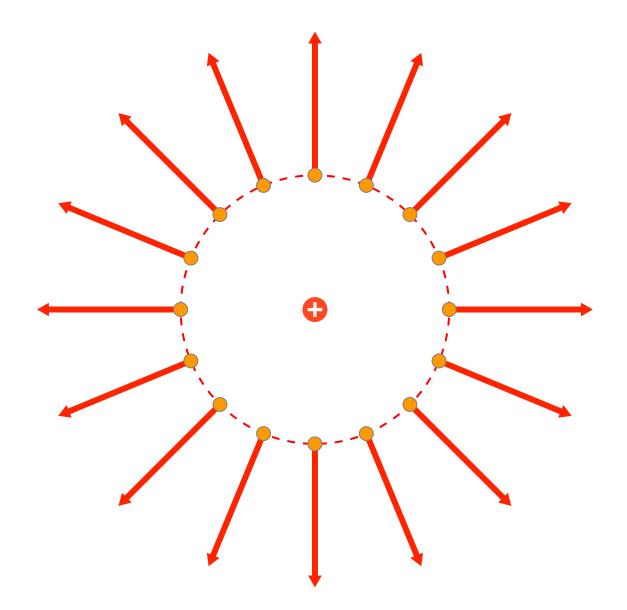
$$\Rightarrow \qquad |\vec{E}||\vec{A}|\cos\theta = \frac{q^{enc}}{\varepsilon_0}$$

Activity 20.5.2 (continued)

There are a couple of things to note about Gauss' Law

- If you know or are given the total amount of charge inside the closed surface, the right side of the equation $(4\pi kq^{enc})$ is easy to calculate.
- The left side of the equation is not easy to calculate unless we limit ourselves to a few special cases:
 - The magnitude of the electric field $(|\vec{E}|)$ is the same everywhere on the closed surface.
 - The angle (θ) between the electric field vector (\vec{E}) and the area vector (\vec{A}) is always the same everywhere on the closed surface.

$\left| \vec{E} \right\| \vec{A} \left| \cos \theta \right|$ is easy to calculate.



$\left|\vec{E}\right| \left|\vec{A}\right| \cos \theta$ is not easy to calculate.

