
Unit 21 – Session 2 
A quick summary of what we’ve learned so far (Unit 20 and Unit 21): 
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Gauss’ Law 
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Instead of forces, an alternative way we approached problems was to use 
the concepts of work and energy. Recall the general energy equation we 
developed last semester, and added to earlier this semester. 

 

 

We aren’t going to do any problems that involve the last three energy 
transfer mechanisms. 

 

 

Also, internal energy changes, , and the heat process, , typically 
are only important in Thermodynamics. 
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This will really simplify the energy conservation equation, leaving us 
with: 

 
 

Writing it out with a little more detail: 

 

where  

  

ΔK = W outside∑
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Activity 21.5.1. 
For part a., we moved the cart along the incline from point a to point c. 
There were 3 forces acting on the cart (our system), so the energy 
conservation equation can be written: 

 
 

However, . Also, we pulled at a 
constant speed, so . Therefore: 

 
 
When you did your calculations, you found: 

 
  

ΔK =W grav +W you +W norm

W norm ≡
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W grav = −W you = − 2.5N( ) 0.3968m( )cos0° = −0.99N ⋅m



Activity 21.5.1. (continued) 
For part b., we moved the cart straight up from point a to point d, then 
sideways from point d to point c. Now, there were only 2 forces acting 
on our system, so the energy equation can be written: 

 

 

Again, we pulled at a constant speed, so . Also,  for both 
forces on the d to c path, so  for the d to c path. Therefore: 

 

 
When you did your calculations, you found: 
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W grav = −W you = − 5.0N( ) 0.1984m( )cos0° = −0.99N ⋅m



Activity 21.5.1. (continued) 
We ended up with the same answer for part b. as we did for part a., even 
though the two paths from a to c were different. 
 
For most forces, this is not the case (the work done by the friction force 
is one example). 
 
The purpose of this activity was to remind us that the gravitational force 
is a conservative force. The work done by a conservative force doesn’t 
depend on the path, it only depends on the starting position 
(configuration) and the ending position (configuration) of the system. 
  



Activity 21.6.1 
Before using our findings from Activity 21.5.1, we are going to continue 
to practice finding work, but now for an electrical force. We really like 
writing the force in terms of the electric field (created by other charges). 
For all three cases, both the electric field, , and the angle, , are 
constant for the whole path, so we can use: 

        (no scary integral needed) 

Unless otherwise stated, it is usually assumed that a test charge, qt, is a 
positive type of charge. 
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Activity 21.7. 
If a force is a conservative force, then the work done by the force can 
instead be written as a change in potential energy, . 

An important thing to make note of: 
● To use potential energy, the system boundary needs to be expanded 

to include the source of the conservative force doing the work. For 
example, to use  on Activity 21.5.1, the system would be the 
cart and the Earth. 

From last semester, we found that the gravitational force, , and the 
spring force, , are both conservative forces. Since the gravitational 
force and the electrical force, , are so, so, so similar, we can expect 
that the electric force is also a conservative force, and indeed it is. 
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Activity 21.7. (continued) 
Going back to the energy equation: 

 

We can now rewrite it as: 

 

Moving the potential energy terms to the right-hand side so all the energy 
terms are together (and so we don’t have to remember the negative 
signs): 

 

We will be focusing on the electric potential energy, . 
  

ΔK =W grav +W spring +W elec +W norm +W tens +!
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Activity 21.7. (continued) 
Actually, instead of electric potential energy, scientists find it more 
useful to introduce a related concept called electric potential. (note: the 
names are unfortunately very similar – not much we can do but be sure to 
pay attention to which one we are talking about). 

The idea behind electric potential is similar to the connection between 
electric force and electric field, but applied to energy instead of force. 

Electric Force and Electric Field 
A collection of source charges creates an electric field, , everywhere 
around them. If another charge, qt, is put into the electric field, then it 
will experience an electric force given by . This allows us to 
define the electric field as , the force per unit charge (with 
units of N/C). 
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Activity 21.7. (continued) 
Electric Potential Energy and Electric Potential 
A collection of source charges creates an electric potential, V, 
everywhere around them. If another charge, qt, is put into the electric 
potential, then the system will have electric potential energy given by 

. This allows us to define the electric potential as , 
the potential energy per unit charge (with units of J/C, or volts). 

We found last (and this) semester that changes in energy are more 
meaningful to us, so if we move the charge, qt, around in the electric 
potential from point a to point b, then the change in electric potential 
energy is . 
  

Uelec = qtV V =Uelec qt

ΔUelec = qtΔV



Activity 21.7.1 
● Change this to “Write the equation for the potential difference, , 

as a function of , , and . 

● Remember that . 
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Activity 21.8 
Read this, but we aren’t going to do Activity 21.8.1. We will just use the 
result of the activity: 

● A point charge, q, creates an electric potential everywhere around it 

(all the way out to infinity) given by  (where k is Coulomb’s 

constant). 

 

A note from your textbook, page 737 
The symbol V is widely used to represent the volume of an object, and 
now we’re introducing the same symbol to mean electric potential. To 
make matters more confusing, V is the abbreviation for volts (the units 
for electric potential, e.g. V = 120 V). In printed text, V for electric 
potential is italicized, while V for volts is not, but you can’t make such a 
distinction in handwritten work. This is not a pleasant state of affairs, but 
these are commonly accepted symbols. You must be especially alert to 
the context in which a symbol is used.) 
  

V = kq
r



Activity 21.9.1 
For a continuous charge distribution, we’ll do what we did before – 
divide the distribution into small segments (the more the better), and treat 
each segment as a point charge, with all the charge at the center of the 
segment. 
The spreadsheet is on the class resources page, and is already completed. 

● Click on cell E9 to see how the Excel formula matches the equation for the electric 
potential created by a point charge. 

● Click on cell B2 to see how we calculated the circumference of the ring. 
● Click on cell B9 and C9 to see how we found how much charge was on each 

segment. 
  



Activity 21.9.2 
Skip parts a. and b.. Doing the integral in part c. gives the exact 
expression for the electric potential created by a ring of charge as: 

 

Use this result to do part d.. 
● Note that this result is only valid for positions on the x-axis, passing through the 

center of the ring. We lose the symmetry of the problem for positions not on the x-
axis – it is a much, much, much harder problem. 

  

V = k qtot

a2 + x2



Activity 21.9.3 
Skip this activity. I can go through part a. individually with anyone who 
would like to. 
  



Activity 21.10.1 
Do your best to do parts a. through d. before looking at the images on the 
next pages. 



 



 



 


