Unit 23.1 – 23.5

In Unit 22 \rightarrow lots of observations \rightarrow some measurements \Rightarrow Developed concepts, knowledge

So far, we have used only small lightbulbs.

We could also have used toaster, hairdryer, computer, etc.

For all cases, we would like to know:

 \rightarrow potential difference, ΔV , across each element (bulb, etc.)

 \rightarrow current, *I*, through each element <u>and</u> battery

Next 2 class – develop ways to calculate ΔV and *I*.

Today's class – continue to measure ΔV (and observe *I* by brightness):

- practice connecting circuits and making measurements with voltmeters.
- continue reinforcing our knowledge.
 - \Rightarrow lots of predictions.

So, what <u>do</u> we know?

- Charge: a property of an object (electron, proton, ion)
- Current: amount of charge (not # of objects) passing a location each second. $I \equiv \frac{q}{\Delta t}$
- Wires: conductors
 - equipotential surfaces
 - \rightarrow electric potential is same everywhere on a wire
- Batteries: source of constant potential difference, ΔV , regardless of
 - circuit connected to it
 - current through it
- Bulbs: provide resistance
 - need a ΔV across a bulb to light it
 - $\rightarrow \text{ need a } \Delta V \text{ across a bulb to cause a current through the bulb}$ (cause) (effect)
 - two bulbs in series have more resistance than a single bulb
 - two bulbs in parallel have less resistance than a single bulb